Randomized Linear Algebra Approaches to Estimate the Von Neumann Entropy of Density Matrices
نویسندگان
چکیده
The von Neumann entropy, named after John von Neumann, is the extension of classical entropy concepts to the field of quantummechanics and, from a numerical perspective, can be computed simply by computing all the eigenvalues of a density matrix, an operation that could be prohibitively expensive for large-scale density matrices. We present and analyze two randomized algorithms to approximate the von Neumann entropy of density matrices: our algorithms leverage recent developments in the Randomized Numerical Linear Algebra (RandNLA) literature, such as randomized trace estimators, provable bounds for the power method, and the use of Taylor series and Chebyschev polynomials to approximate matrix functions. Both algorithms come with provable accuracy guarantees and our experimental evaluations support our theoretical findings showing considerable speedup with small accuracy loss.
منابع مشابه
Various topological forms of Von Neumann regularity in Banach algebras
We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...
متن کاملThe Curvature of the Bogoliubov-kubo-mori Scalar Product on Matrices
The state space of a finite quantum system is identified with the set of positive semidefinite matrices of trace 1. The set of all strictly positive definite matrices of trace 1 becomes naturally a differentiable manifold and the Bogoliubov-Kubo-Mori scalar product defines a Riemannian structure on it. Reference [4] tells about the relation of this metric to the von Neumann entropy functional. ...
متن کاملNonlinear $*$-Lie higher derivations on factor von Neumann algebras
Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.
متن کاملReiter’s Properties for the Actions of Locally Compact Quantum Goups on von Neumann Algebras
متن کامل
Submajorization inequalities associated with $tau$-measurable operators
The aim of this note is to study the submajorization inequalities for $tau$-measurable operators in a semi-finite von Neumann algebra on a Hilbert space with a normal faithful semi-finite trace $tau$. The submajorization inequalities generalize some results due to Zhang, Furuichi and Lin, etc..
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.01072 شماره
صفحات -
تاریخ انتشار 2018